April 24, 2007

The Honorable David R. Obey
Chairman, Appropriations Committee
U.S. House of Representatives

The Honorable Jerry Lewis
Ranking Member, Appropriations Committee
U.S. House of Representatives

Dear Chairman Obey & Ranking Member Lewis:

On behalf of the business, research university, and science and engineering communities, we urge you to fund, in Fiscal Year 2008 (FY08), the Department of Energy (DOE) Office of Science at $4.4 billion, the National Science Foundation (NSF) at $6.43 billion, and the National Institute of Standards and Technology’s (NIST) Scientific and Technical Research and Services (STRS) at $504 million, all of which are consistent with the priorities in the House and Senate Budget Resolutions and the President’s FY08 request. Funding these amounts would signal that the United States values basic research as a key component of an innovation economy and that Congress remains committed to strengthening U.S. competitiveness in today’s global economy.

These increases are part of a long-term goal to double funding for these three agencies that are critical for physical sciences and engineering research, a goal that is included in the congressional innovation agendas of leaders for both political parties and the President’s American Competitiveness Initiative. In addition, the 2005 National Academies report, “Rising Above the Gathering Storm,” which focuses on the innovation challenges the United States faces in the global arena, recommends doubling the budgets of physical sciences research as a means to address the grave concern “that the scientific and technical building blocks of our economic leadership are eroding at a time when many other nations are gathering strength.”

During the last five decades alone, the contributions of physical science and engineering research to U.S. security, economic growth, productivity, and health have been extraordinary. Transistors, integrated circuits, lasers, CT scanners, MRI, arthroscopy, stealth aircraft, wireless communications, global positioning system, iPods, and flat panel displays are just a few examples. With federal spending for physical sciences and engineering research as a percentage of GDP at only half of its 1970 value, the United States is less equipped than it should be to tackle the energy, security, and economic challenges that the country faces in the 21st century.

By fully funding the DOE Office of Science, NSF and NIST, Congress would put the United States on a path to re-energize the innovation economy that has so benefited our country. Furthermore, this federally funded research, much of which takes place at U.S. universities, enables our universities and graduate schools to attract and train America’s next generation of scientists and engineers.

AeA (American Electronics Association) Intel Corporation
American Chemical Society Materials Research Society
American Physical Society Microsoft
Association of American Universities NASULGC, A Public University Association
Association for Computing Machinery, U.S. Policy Committee National Association of Manufacturers
ASTRA, The Alliance for Science & Technology Research in America National Council for Advanced Manufacturing (NACFAM)
Battelle Northrop Grumman Corporation
Business-Higher Education Forum Optoelectronics Industry Development Association
CompTIA Procter & Gamble
Computing Research Association Science Coalition
IBM Corporation Semiconductor Industry Association
IEEE-USA Southeastern Universities Research Association

Texas Instruments
New York Structural Biology Center