AAMC Letter Opposing Anti-Cloning Legislation Sent to Members of the House Energy and Commerce Committee July 26

Dear Representative --------:

The current opportunities in medical research are unparalleled in our nation's history. To help ensure the fulfillment of these opportunities, the Association of American Medical Colleges urges Congress to oppose legislation that would prohibit the use of somatic cell nuclear transfer. Such a blanket prohibition would have grave implications for future advances in medical research and human healing.

As such, we urge you to reject the approach embodied in H.R. 2505, the "Human Cloning Prohibition Act of 2001." H.R. 2505 would have a chilling effect on vital areas of research that could prove to be of enormous public benefit. Instead, we urge you to adopt the approach taken in H.R. 2172, the "Cloning Prohibition Act of 2001," introduced by Representatives Jim Greenwood (R-Pa.) and Peter Deutsch (D-Fla.). This bill prohibits the use of somatic cell nuclear transfer "with the intent to initiate a pregnancy" but would permit potentially life-saving research to continue.

We agree with the American public that the cloning of human beings should not proceed. However, it is important to recognize the difference between reproductive cloning and the use of cloning technology that does not create a human being. Non-reproductive cloning technology has potentially important applications in research, medicine and industry, including genetically engineered human cell cultures that would serve as "therapeutic tissues" in the treatment of currently intractable human diseases. These uses of somatic cell nuclear transfer technology do not lead to a cloned human being.

According to the National Institutes of Health, somatic cell nuclear transfer technology could provide an invaluable approach by which to study how cells become specialized, which in turn could provide new understanding of the mechanisms that lead to the development of the abnormal cells responsible for cancers and certain birth defects. Improved understanding of cell specialization may also provide answers to how cells age or are regulated - leading to new insights into the treatment or cure of Alzheimer's and Parkinson's diseases, or other incapacitating degenerative disease of the brain and spinal cord. The technology might also help us understand how to activate certain genes to permit the creation of customized cells for transplantation or grafting. Such cells would be genetically identical to the cells of the donor and could therefore be
transplanted into that donor without fear of immune rejection, the major biological barrier to organ and tissue transplantation at this time.

Other types of specialized cells could be created to enable skin grafts for burn victims; bone marrow stem cells to treat leukemia and other blood diseases; nerve stem cells to treat neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis (Lou Gehrig's disease), Alzheimer's and Parkinson's disease, and to repair spinal cord injuries; muscle cell precursors to treat muscular dystrophy and heart disease; and cartilage-forming cells to reconstruct joints damaged by injury or arthritis. Somatic cell nuclear transfer technology could also be used potentially to accomplish remarkable increases in the efficiency and efficacy of gene therapy by permitting the creation of pure populations of genetically "corrected" cells that could then be delivered back into the patient, again with no risk of immune rejection. Indeed, this technology could well lead to the operationalization of gene therapy as a practicable and effective therapeutic modality - a goal which to date has proved elusive.

We will never see the fulfillment of any of these promising areas if we choose to take the perilous path of banning outright the use of somatic cell nuclear transfer technology through legislation. Thus, the AAMC respectfully urges the Congress to reject H.R. 2505 and adopt H.R. 2172. We thank you for your consideration of this vital issue.

Sincerely,

Jordan J. Cohen, M.D.